A Variable Neighborhood Search for the Generalized Vehicle Routing Problem with Stochastic Demands
نویسندگان
چکیده
In this work we consider the generalized vehicle routing problem with stochastic demands (GVRPSD) being a combination of the generalized vehicle routing problem, in which the nodes are partitioned into clusters, and the vehicle routing problem with stochastic demands, where the exact demands of the nodes are not known beforehand. It is an NP-hard problem for which we propose a variable neighborhood search (VNS) approach to minimize the expected tour length through all clusters. We use a permutation encoding for the cluster sequence and consider the preventive restocking strategy where the vehicle restocks before it potentially runs out of goods. The exact solution evaluation is based on dynamic programming and is very time-consuming. Therefore we propose a multi-level evaluation scheme to significantly reduce the time needed for solution evaluations. Two different algorithms for finding an initial solution and three well-known neighborhood structures for permutations are used within the VNS. Results show that the multi-level evaluation scheme is able to drastically reduce the overall run-time of the algorithm and that it is essential to be able to tackle larger instances. A comparison to an exact approach shows that the VNS is able to find an optimal or near-optimal solution in much shorter time.
منابع مشابه
A Combined Stochastic Programming and Robust Optimization Approach for Location-Routing Problem and Solving it via Variable Neighborhood Search algorithm
The location-routing problem is one of the combined problems in the area of supply chain management that simultaneously make decisions related to location of depots and routing of the vehicles. In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve th...
متن کاملModeling the Time Windows Vehicle Routing Problem in Cross-Docking Strategy Using Two Meta-Heuristic Algorithms
In cross docking strategy, arrived products are immediately classified, sorted and organized with respect to their destination. Among all the problems related to this strategy, the vehicle routing problem (VRP) is very important and of special attention in modern technology. This paper addresses the particular type of VRP, called VRPCDTW, considering a time limitation for each customer/retai...
متن کاملInvestigating Zone Pricing in a Location-Routing Problem Using a Variable Neighborhood Search Algorithm
In this paper, we assume a firm tries to determine the optimal price, vehicle route and location of the depot in each zone to maximise its profit. Therefore, in this paper zone pricing is studied which contributes to the literature of location-routing problems (LRP). Zone pricing is one of the most important pricing policies that are prevalently used by many companies. The proposed problem is v...
متن کاملCompetitive Vehicle Routing Problem with Time Windows and Stochastic Demands
The competitive vehicle routing problem is one of the important issues in transportation area. In this paper a new method for competitive VRP with time windows and stochastic demand is introduced. In the presented method a three time bounds are given and the probability of arrival time between each time bound is assumed to be uniform. The demands of each customer are different in each time wind...
متن کاملA Two-Phase Hybrid Heuristic Method for a Multi-Depot Inventory-Routing Problem
In this study, a two phase hybrid heuristic approach was proposed to solve the multi-depot multi-vehicle inventory routing problem (MDMVIRP). Inventory routing problem (IRP) is one of the major issues in the supply chain networks that arise in the context of vendor managed systems (VMI) The MDMVIRP combines inventory management and routing decision. We are given on input a fleet of homogeneous ...
متن کامل